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Introduction

1.1 Introduction
Engineering Field Theory with Applications is intended to give a
unified mathematical treatment to several disciplines of engineering.
This unified field theory is common to electric, magnetic and gravita-
tional fields to name a few; this commonality aids our understanding.
First, however, what is a field? Most of us experience fields regularly
and may not realize it. For example, as you read this page it is in an
electric field and you are sitting (or lying down) in a thermal field.
Then, all of us are in a gravitational field. These fields are characterized
by the fact that each point in space has its own (field) value. So we say
a field is a spatial arrangement — imaginary or real — of any parameter.
The space may be one-, two-, or three-dimensional depending on the
quantity. A temperature field is a one-, two-, or three-dimensional
arrangement of points at which we determine a temperature. All the
points together constitute a field. The kitchen oven is an example of a
three-dimensional temperature field. A gravitational field is a three-
dimensional arrangement of forces of gravity. A spacecraft is subjected
to these forces as it flies through the field. The gravitational force is
exerted by the planet on the craft. Each spatial point can be
represented by a different gravitational constant; there are an infinite
number of values. These fields exist individually or coexist. In addition,
there are fields which interact. For example, in electromagnetics, electric
and magnetic fields interact. The electric field gives rise to the magnetic
field and the magnetic field gives rise to the electric field. From this we
get wave propagation. In fluids, temperature and velocity fields
interact. An increase in the temperature of a fluid causes atoms and
electrons to be agitated at a higher velocity. The fluid’s velocity
increases. The inverse is true: an increase (or decrease) in the velocity
field of a fluid will cause an increase (or decrease) in the temperature
field.
Since there is this interaction and coexistence between engineering
fields, it makes sense to look at their bases to see what they have in
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common. The common language of engineering is mathematics. Are
the equations used in the fields the same, similar, or completely
different? It turns out that the answer is yes. Some equations are the
same, some equations are similar and some equations are different. We
will point these out as we proceed on our odyssey through the book.
This technique of examining sameness, similarities and differences will
hopefully strengthen our study. This trend or evolution of pedagogy is
actually a broadening of what is already done in most curricula. For
example, electricity and magnetism are taught together in electrical
engineering courses today when at first they were not even connected
by any unifying laws.

Today the engineering graduate faces the demands of society in a
variety of fields. The engineer designing an amplifier must be concerned
with more than the electronic design. In addition, he must be
concerned with heat transfer and space optimization. Gone are the days
when the electrical engineers, mechanical engineers and industrial
engineers would operate in isolated cloisters. As another example take
the automotive engineer. What once was the domain of the mechanical
engineer now includes complex problems such as air pollution, fuel
efficiency, electronic ignitions and on-board computers. More could be
said about areas such as space exploration, microelectronics and
electrical power generation. Suffice it to say that today’s engineer must
be versed in more than one field. Let’s now look at the common
language of engineering.

1.2 Mathematical basis

Mathematics is the language of engineering. Mathematical
equations or expressions describe certain behavior in engineering.
There are several mathematical expressions common to the engineering
disciplines we study in this book. The first is Poisson’s equation.

V3f = constant (1.1)

where f is some spatial function.
If the right side of equation (1.1) is zero, we obtain Laplace’s

equation, or
V¥ =0 (1.2)

The solutions of equations (1.1) and (1.2) are the potential functions.
From these we can obtain the field intensity vectors. This is obtained by
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taking the derivative of the potential. Once we have the field intensity,
we are able to determine the flux density.

Another important mathematical principle we will utilize in this book
is Gauss’ law. Gauss’ law states, ‘the flux emanating from a closed
surface is the result of the charge enclosed by that surface’.

¢EQ:3§D-dA (1.3)

where Q is some enclosed source, D is a flux density and A is the area
which encloses the source. It is a most useful law when the problem has
symmetry.

That is, for symmetric sources the flux density, D, in equation (1.3) is
moved outside the integral. This simplifies the integration. Once we
obtain the density, we can find the field intensity and potential.
Equations (1.1) (or (1.2)) and (1.3) are two different methods of
solving field problems. Equation (1.1) gives us the potential function
while equation (1.3) gives us the density function. The potential and
density functions are related and their relationship will be shown in
later chapters. Naturally both methods should give the same results.

A third important equation we will utilize is Stokes’ theorem. Stokes’
theorem relates a surface integral to a line integral. The surface in this
case is an open surface as opposed to the Gaussian surface in equation
(1.3) above, which is a closed surface. Stokes’ theorem is written

9@F-dl=”VxF-dA (1.4)

for any vector F. The dl path in equation (1.4) encloses the open
surface indicated on the right-hand side.

A fourth important equation is the divergence theorem. While
Stokes’ theorem relates a closed line integral to an open area integral,
the divergence theorem relates a closed surface to a volume. This is
written

}QD-dA=f”v-Ddu (1.5)

where v is volume. Thus, for any vector density, D, the divergence
theorem says, if we add all the densities which are at an enclosing
surface, the result will equal the divergence of D throughout the
volume. The surface on the left of equation (1.5) encloses the volume
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on the right. This is the integral form of Maxwell’s first equation. More
will be said about that later.

1.3 Gradient
The last mathematical operation we mention in this introduc-
tion is the gradient. Gradient is the maximum rate of change of
potential with position. The gradient is a vector quantity. For conserva-
tive fields the gradient of the potential equals minus the field intensity.
In electrostatics we write

E=—-VV volts/meter

where E is the electric field intensity.
In magnetostatics we write

H=-VV, amps/meter

where H is the magnetic field intensity and V,, is magnetic scalar
potential.
In gravitational fields we write

g=—VV, Newtons/km or meters/second?

where g is the gravitational field intensity and V, is gravitational
potential.
In fluids we write

u=—VV, meters/second

where u is velocity and V; is fluid potential.
In heat transfer by conduction we write

q=—kVT watts/meter’

where q is heat flux density, k is thermal conductivity and T is

temperature.
In electrical conduction we write

J=—-0VV amps/meter?

where J is a current density vector and o is conductivity.
In fluid flow through permeable media we write

u=—kVp meters/second

where u is velocity, & is soil permeability and p is pressure.
In diffusion we write

D, = —-k/,VN particles/meter” second
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where D, is particle flux density, k, is the diffusion coefficient and N is
particles per unit volume.
Finally, in acoustics we write

u= —<, ! )Vp meters/second
JWPo

where u is velocity of the sound wave, w is radian frequency, p, is

density and p is pressure.

We have attempted to show a pattern in this introduction of concepts
involving fields and fluxes. It is obvious that the fields and fluxes are
different quantities with different units. The mathematical exercises are
the same.

Problems

1. List five engineering occupations which require more than one
engineering field. For each occupation list the different engineering
fields required.

2. List three countries other than North American countries which can
utilize engineers with a broad background — preferable to highly
specialized engineers —and specify the desirable engineering back-
grounds.



